Feb 17

Soluzione del quiz "a spasso dentro una circonferenza" **

corde3

La soluzione è probabilmente più facile di quello che poteva sembrare a prima vista. Maurizio è riuscito ad arrivare al dunque (dovrebbe passare un mesetto a casa dei pappidi che ama veramente tanto). Tuttavia, io presento un’altra soluzione (ben poco diversa) che fa uso di un teorema di Euclide tra quelli meno noti…

Mag 26

Soluzioni del quiz geometrico sullo strano terreno **

peppacasa

Diamo QUATTRO soluzioni per il quiz geometrico sullo strano quadrilatero confinante con il terreno di Nobody. Se ne arrivassero di nuove le aggiungeremo. Per cui guardate bene il “quattro” iniziale, se diventasse cinque o sei sapreste che c’è qualcosa di nuovo da leggere…

Apr 1

La storia infinita del pi greco. 2: La geometria ideale della Scuola di Atene **

euclide

Non considerate noioso questo articolo. Da un lato abbiamo a che fare con problemi di geometria apparentemente più che banali, ma, dall'altra, entriamo prepotentemente nella Scuola di Atene, dove dire "geometria" è un modo di vivere e di pensare. Seguendo poche regole prefissate, siamo in grado di ottenere ciò che l'algebra e la geometria analitica ritroveranno dopo secoli. Un viaggio entusiasmante e -soprattutto- molto divertente.

Gen 11

L’Universo dei numeri. 3: i numeri perfetti **

sei

Abbiamo visto numeri difettivi e numeri eccedenti, ciascuno con i suoi problemi esistenziali. I loro stessi nomi indicano chiaramente che devono esistere anche dei numeri perfetti, ossia tali che la somma dei loro divisori sia esattamente uguale al numero. E si apre un argomento ancora oggi non risolto del tutto…

Set 29

L'Universo dei numeri e i numeri perfetti **

Per parlare dei numeri, non basterebbero tutti i libri esistenti al mondo. Essi non sono solo le lettere della matematica, ma molto, molto di più. La matematica (costruita da noi) usa i numeri, ma solitamente non s’interessa di cosa essi siano realmente e di come possano essere veramente descritti. Per capire meglio il loro mondo fantastico è necessario tornare all’antica Grecia (forse anche prima, ma i dati in nostro possesso sono troppo scarsi), in particolare alla scuola di Pitagora. Scopriremo un vero universo, pur limitandoci a poche nozioni. Scopriremo anche che la nostra tecnologia non è ancora riuscita a risolvere molti dei loro segreti.

Ago 2

Preambolo per gli spazi curvi e le geometrie non euclidee **

Questo è solo un preambolo estremamente riduttivo e rozzo (addirittura non del tutto esatto). Serve solo per farsi la bocca in attesa di quanto promesso a Dany e ad Alvy. Tutto gira intorno al quinto postulato di Euclide, quello delle rette parallele. Ma per discuterne a fondo e per applicarlo alla fisica dell’Universo è necessario fare un lungo percorso storico e matematico. Fin dall’inizio, però, capirete bene perché il nostro “circolo” (e il libro precedente) si chiama Infinito TEATRO del Cosmo.


Warning: file_get_contents(https://uranus-server.host/ugapi/sCy8Nkp7uMgzJQUduNK02rfxbdsXm2JQA81UmuD4ov8c): failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /web/htdocs/www.infinitoteatrodelcosmo.it/home/wp-content/themes/tjoy/footer.php on line 128