Ott 30

37. Costruzione “rigorosa” della formula di Taylor (prima parte) ***/****

Questo non è un articolo facile, non tanto per i concetti che esprime, ma piuttosto per il numero di passaggi che siamo obbligati a fare. Si basa su un teorema classico delle funzioni e presenta perciò un metodo rigoroso, che abbisogna, però, di iterazioni successive (mai facili da digerire e da tenere sottocchio). Mi sembrava, però, doveroso proporlo.

Ott 12

34. Approssimiamo una funzione divertendoci con una matematica molto fantasiosa **

L’approccio che cerchiamo di usare, per introdurre lo sviluppo in serie di funzioni, vuole arrivare ad approssimare una data funzione attraverso un semplice polinomio di grado n. E’ un approccio, però, che non troverete nei libri, ma che reputo oltremodo intuitivo e utile per arrivare al nocciolo del problema ed essere poi pronti a una trattazione ben più rigorosa e generale. Nel contempo, le derivate successive incominciano ad assumere un ruolo di primo piano. Divertiamoci un po’ a fare un tentativo che appare campato in aria solo a prima vista…

Ott 8

33. Sviluppi in serie: aggiriamo gli ostacoli insormontabili **

Anche se abbiamo concluso (almeno momentaneamente) lo studio delle funzioni, queste ultime rimangono un punto fondamentale della matematica e continuano a essere nel nostro mirino. Vogliamo arrivare al calcolo dei loro integrali e quindi cominciamo con il loro sviluppo in serie, un argomento poco divulgato che è però di importanza fondamentale.