lacomics.org
postyourgirls.webcam
Ott 20

LA SFERA DI POINCARÉ 3). Le trivarietà.

piatta

Nella serie "MATEMATIZZIAMO IL NASTRO DI MÖBIUS", abbiamo visto come generare delle varietà bidimensionali in modo astratto. Riprendiamo in modo meno formale tale procedimento,estendendolo allo studio delle tri-varietà,ossia le varietà di dimensione tre,che non sono rappresentabili nello spazio tridimensionale.

Ago 11

La sfera di Poincaré. 2) : L'enunciato della congettura. ***

poincarè

Nato nel 1854, Poincaré fu l’ultimo genio mondiale di cognizioni scientifiche universali, non frenato da alcuna barriera disciplinare, forte d’una erudizione scientifica portentosa. Formulò quello che è stato il il quinto problema del Millennio, la congettura che porta il suo nome. Per non parlare del grosso contributo dato allo studio della relatività ristretta.

Lug 12

La sfera di Poincaré. 1) : Le omotopie e la semplice connessione.***

torocappi

Eccoci dunque alla prima puntata della serie dedicata alla congettura di Poincaré. Per capire bene l'enunciato della congettura è necessario conoscere il concetto di "semplice connessione". Procederemo in modo intuitivo, aiutandoci con disegni e ragionamenti abbastanza pratici. Non tutti gli enunciati saranno dimostrati formalmente. D'altro canto, quanto fatto nella prima serie topologica dovrebbe essere sufficiente per comprendere a fondo questo articolo.

Giu 16

Un progetto ambizioso.

dodecaedro

Con l'articolo sul piano proiettivo si conclude la serie "Matematizziamo il nastro di Mobius" in cui sono stati esposti i concetti fondamentali della topologia generale. Ma lo topologia non finisce qui.Il tutto andrà poi esteso alle tri-varietà; fino ad ora ci siamo occupati di superfici, ma adesso cominceremo a parlare anche di varietà tridimensionali, che […]

Mar 21

Matematizziamo il nastro di Möbius ,parte 10°:la sfera .***

sferaevi

Ci sono più modi per costruire una sfera con la topologia quoziente. Il più semplice consiste però nel fare il quoziente di un disco. Fino adesso abbiamo fatto quozienti di quadrati e rettangoli, ma nulla ci vieta di farlo di altri sottospazi topologici. Consideriamo dunque un disco e i punti appartenenti agli estremi di una […]

Feb 17

Matematizziamo il nastro di Möbius ,parte 8°: Il cilindro e il nastro.***

Senza-titolo-1

Affrontiamo oggi i primi due esempi di superfici topologiche generate partendo dal quoziente di uno spazio topologico basilare (un quadrato o un rettangolo) . Partiamo dalle superfici più semplici da generare: il cilindro e il nastro. Fra le altre cose vedremo anche immediatamente la differenza fra superfici orientabili e non orientabili, e la definizione di orientabilità.

Dic 17

Le funzioni quoziente ****

dia.NNNGIF

Volevo fare un esempio semplice per applicare gli ultimi risultati (più uno inserito al volo) alla costruzione di un omeomorfismo fra uno spazio quoziente ed un sottospazio definito da una espressione analitica. Questo ci darà un metodo generale per studiare le superfici quoziente e rapportarle a quelle dello spazio Euclideo,

Nov 16

Matematizziamo il nastro di Möbius ,parte 7°:un teorema necessario.

intersezione

Lo scopo di questo articolo è quello di chiarire per bene cosa sono gli spazi quoziente, e come siano collegati ad altri spazi che conosciamo molto bene. Il collegamento è realizzato tramite il concetto più importante della topologia: l'omeomorfismo. Questo teorema diventa necessario per realizzare degli omeomorfismi fra spazi topologici derivanti da una operazione di incollatura, ovvero di passaggio al quoziente.

Ott 21

Un atlante per il cerchio ***

copo2

Non è proprio banale costruire un atlante per una varietà topologica. Per cui voglio fare un esempio "pratico", usando una varietà unidimensionale; Il cerchio è infatti una varietà topologica di dimensione 1.La scelta ovviamente è per comodità grafica e di notazioni.

Set 3

Matematizziamo il nastro di Möbius ,parte 6°: La topologia quoziente

topos

Grazie alla topologia quoziente saremo in grado di costruire degli spazi topologici nuovi e molto interessanti, tipo appunto il nastro di Möbius. Si, siamo arrivati al dunque, ma ancora un attimo di pazienza. Le costruzioni che faremo ci faranno capire l'importanza in matematica delle relazioni di equivalenza, con le quali è possibile perfino "incollare" dei punti di uno spazio topologico.

Who makes the best rolex replica watches? the best 2020 rolex website watches

shemale777.com vrpornx.net kinkydom.net